- Number System and Arithmetic
- Probability
- Mensuration
- Trigonometry
- Mathematics
Hypothesis | Definition, Meaning and Examples
Hypothesis is a hypothesis is fundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables.
Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion . Hypothesis creates a structure that guides the search for knowledge.
In this article, we will learn what hypothesis is, its characteristics, types, and examples. We will also learn how hypothesis helps in scientific research.
Table of Content
What is Hypothesis?
Characteristics of hypothesis, sources of hypothesis, types of hypothesis, functions of hypothesis, how hypothesis help in scientific research.
Hypothesis is a suggested idea or an educated guess or a proposed explanation made based on limited evidence, serving as a starting point for further study. They are meant to lead to more investigation.
It's mainly a smart guess or suggested answer to a problem that can be checked through study and trial. In science work, we make guesses called hypotheses to try and figure out what will happen in tests or watching. These are not sure things but rather ideas that can be proved or disproved based on real-life proofs. A good theory is clear and can be tested and found wrong if the proof doesn't support it.
Hypothesis Meaning
A hypothesis is a proposed statement that is testable and is given for something that happens or observed.
- It is made using what we already know and have seen, and it's the basis for scientific research.
- A clear guess tells us what we think will happen in an experiment or study.
- It's a testable clue that can be proven true or wrong with real-life facts and checking it out carefully.
- It usually looks like a "if-then" rule, showing the expected cause and effect relationship between what's being studied.
Here are some key characteristics of a hypothesis:
- Testable: An idea (hypothesis) should be made so it can be tested and proven true through doing experiments or watching. It should show a clear connection between things.
- Specific: It needs to be easy and on target, talking about a certain part or connection between things in a study.
- Falsifiable: A good guess should be able to show it's wrong. This means there must be a chance for proof or seeing something that goes against the guess.
- Logical and Rational: It should be based on things we know now or have seen, giving a reasonable reason that fits with what we already know.
- Predictive: A guess often tells what to expect from an experiment or observation. It gives a guide for what someone might see if the guess is right.
- Concise: It should be short and clear, showing the suggested link or explanation simply without extra confusion.
- Grounded in Research: A guess is usually made from before studies, ideas or watching things. It comes from a deep understanding of what is already known in that area.
- Flexible: A guess helps in the research but it needs to change or fix when new information comes up.
- Relevant: It should be related to the question or problem being studied, helping to direct what the research is about.
- Empirical: Hypotheses come from observations and can be tested using methods based on real-world experiences.
Hypotheses can come from different places based on what you're studying and the kind of research. Here are some common sources from which hypotheses may originate:
- Existing Theories: Often, guesses come from well-known science ideas. These ideas may show connections between things or occurrences that scientists can look into more.
- Observation and Experience: Watching something happen or having personal experiences can lead to guesses. We notice odd things or repeat events in everyday life and experiments. This can make us think of guesses called hypotheses.
- Previous Research: Using old studies or discoveries can help come up with new ideas. Scientists might try to expand or question current findings, making guesses that further study old results.
- Literature Review: Looking at books and research in a subject can help make guesses. Noticing missing parts or mismatches in previous studies might make researchers think up guesses to deal with these spots.
- Problem Statement or Research Question: Often, ideas come from questions or problems in the study. Making clear what needs to be looked into can help create ideas that tackle certain parts of the issue.
- Analogies or Comparisons: Making comparisons between similar things or finding connections from related areas can lead to theories. Understanding from other fields could create new guesses in a different situation.
- Hunches and Speculation: Sometimes, scientists might get a gut feeling or make guesses that help create ideas to test. Though these may not have proof at first, they can be a beginning for looking deeper.
- Technology and Innovations: New technology or tools might make guesses by letting us look at things that were hard to study before.
- Personal Interest and Curiosity: People's curiosity and personal interests in a topic can help create guesses. Scientists could make guesses based on their own likes or love for a subject.
Here are some common types of hypotheses:
Simple Hypothesis
Complex hypothesis, directional hypothesis.
- Non-directional Hypothesis
Null Hypothesis (H0)
Alternative hypothesis (h1 or ha), statistical hypothesis, research hypothesis, associative hypothesis, causal hypothesis.
Simple Hypothesis guesses a connection between two things. It says that there is a connection or difference between variables, but it doesn't tell us which way the relationship goes. Example: Studying more can help you do better on tests. Getting more sun makes people have higher amounts of vitamin D.
Complex Hypothesis tells us what will happen when more than two things are connected. It looks at how different things interact and may be linked together. Example: How rich you are, how easy it is to get education and healthcare greatly affects the number of years people live. A new medicine's success relies on the amount used, how old a person is who takes it and their genes.
Directional Hypothesis says how one thing is related to another. For example, it guesses that one thing will help or hurt another thing. Example: Drinking more sweet drinks is linked to a higher body weight score. Too much stress makes people less productive at work.
Non-Directional Hypothesis
Non-Directional Hypothesis are the one that don't say how the relationship between things will be. They just say that there is a connection, without telling which way it goes. Example: Drinking caffeine can affect how well you sleep. People often like different kinds of music based on their gender.
Null hypothesis is a statement that says there's no connection or difference between different things. It implies that any seen impacts are because of luck or random changes in the information. Example: The average test scores of Group A and Group B are not much different. There is no connection between using a certain fertilizer and how much it helps crops grow.
Alternative Hypothesis is different from the null hypothesis and shows that there's a big connection or gap between variables. Scientists want to say no to the null hypothesis and choose the alternative one. Example: Patients on Diet A have much different cholesterol levels than those following Diet B. Exposure to a certain type of light can change how plants grow compared to normal sunlight.
Statistical Hypothesis are used in math testing and include making ideas about what groups or bits of them look like. You aim to get information or test certain things using these top-level, common words only. Example: The average smarts score of kids in a certain school area is 100. The usual time it takes to finish a job using Method A is the same as with Method B.
Research Hypothesis comes from the research question and tells what link is expected between things or factors. It leads the study and chooses where to look more closely. Example: Having more kids go to early learning classes helps them do better in school when they get older. Using specific ways of talking affects how much customers get involved in marketing activities.
Associative Hypothesis guesses that there is a link or connection between things without really saying it caused them. It means that when one thing changes, it is connected to another thing changing. Example: Regular exercise helps to lower the chances of heart disease. Going to school more can help people make more money.
Causal Hypothesis are different from other ideas because they say that one thing causes another. This means there's a cause and effect relationship between variables involved in the situation. They say that when one thing changes, it directly makes another thing change. Example: Playing violent video games makes teens more likely to act aggressively. Less clean air directly impacts breathing health in city populations.
Hypotheses have many important jobs in the process of scientific research. Here are the key functions of hypotheses:
- Guiding Research: Hypotheses give a clear and exact way for research. They act like guides, showing the predicted connections or results that scientists want to study.
- Formulating Research Questions: Research questions often create guesses. They assist in changing big questions into particular, checkable things. They guide what the study should be focused on.
- Setting Clear Objectives: Hypotheses set the goals of a study by saying what connections between variables should be found. They set the targets that scientists try to reach with their studies.
- Testing Predictions: Theories guess what will happen in experiments or observations. By doing tests in a planned way, scientists can check if what they see matches the guesses made by their ideas.
- Providing Structure: Theories give structure to the study process by arranging thoughts and ideas. They aid scientists in thinking about connections between things and plan experiments to match.
- Focusing Investigations: Hypotheses help scientists focus on certain parts of their study question by clearly saying what they expect links or results to be. This focus makes the study work better.
- Facilitating Communication: Theories help scientists talk to each other effectively. Clearly made guesses help scientists to tell others what they plan, how they will do it and the results expected. This explains things well with colleagues in a wide range of audiences.
- Generating Testable Statements: A good guess can be checked, which means it can be looked at carefully or tested by doing experiments. This feature makes sure that guesses add to the real information used in science knowledge.
- Promoting Objectivity: Guesses give a clear reason for study that helps guide the process while reducing personal bias. They motivate scientists to use facts and data as proofs or disprovals for their proposed answers.
- Driving Scientific Progress: Making, trying out and adjusting ideas is a cycle. Even if a guess is proven right or wrong, the information learned helps to grow knowledge in one specific area.
Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:
- Initiating Investigations: Hypotheses are the beginning of science research. They come from watching, knowing what's already known or asking questions. This makes scientists make certain explanations that need to be checked with tests.
- Formulating Research Questions: Ideas usually come from bigger questions in study. They help scientists make these questions more exact and testable, guiding the study's main point.
- Setting Clear Objectives: Hypotheses set the goals of a study by stating what we think will happen between different things. They set the goals that scientists want to reach by doing their studies.
- Designing Experiments and Studies: Assumptions help plan experiments and watchful studies. They assist scientists in knowing what factors to measure, the techniques they will use and gather data for a proposed reason.
- Testing Predictions: Ideas guess what will happen in experiments or observations. By checking these guesses carefully, scientists can see if the seen results match up with what was predicted in each hypothesis.
- Analysis and Interpretation of Data: Hypotheses give us a way to study and make sense of information. Researchers look at what they found and see if it matches the guesses made in their theories. They decide if the proof backs up or disagrees with these suggested reasons why things are happening as expected.
- Encouraging Objectivity: Hypotheses help make things fair by making sure scientists use facts and information to either agree or disagree with their suggested reasons. They lessen personal preferences by needing proof from experience.
- Iterative Process: People either agree or disagree with guesses, but they still help the ongoing process of science. Findings from testing ideas make us ask new questions, improve those ideas and do more tests. It keeps going on in the work of science to keep learning things.
People Also View:
Mathematics Maths Formulas Branches of Mathematics
Hypothesis is a testable statement serving as an initial explanation for phenomena, based on observations, theories, or existing knowledge . It acts as a guiding light for scientific research, proposing potential relationships between variables that can be empirically tested through experiments and observations.
The hypothesis must be specific, testable, falsifiable, and grounded in prior research or observation, laying out a predictive, if-then scenario that details a cause-and-effect relationship. It originates from various sources including existing theories, observations, previous research, and even personal curiosity, leading to different types, such as simple, complex, directional, non-directional, null, and alternative hypotheses, each serving distinct roles in research methodology .
The hypothesis not only guides the research process by shaping objectives and designing experiments but also facilitates objective analysis and interpretation of data , ultimately driving scientific progress through a cycle of testing, validation, and refinement.
Hypothesis - FAQs
What is a hypothesis.
A guess is a possible explanation or forecast that can be checked by doing research and experiments.
What are Components of a Hypothesis?
The components of a Hypothesis are Independent Variable, Dependent Variable, Relationship between Variables, Directionality etc.
What makes a Good Hypothesis?
Testability, Falsifiability, Clarity and Precision, Relevance are some parameters that makes a Good Hypothesis
Can a Hypothesis be Proven True?
You cannot prove conclusively that most hypotheses are true because it's generally impossible to examine all possible cases for exceptions that would disprove them.
How are Hypotheses Tested?
Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data
Can Hypotheses change during Research?
Yes, you can change or improve your ideas based on new information discovered during the research process.
What is the Role of a Hypothesis in Scientific Research?
Hypotheses are used to support scientific research and bring about advancements in knowledge.
Similar Reads
- Hypothesis | Definition, Meaning and Examples Hypothesis is a hypothesis is fundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables. Hypothesis is also called Theory, Thesis, Guess, Assumption, or Sug 12 min read
- Alternative Hypothesis: Definition, Types and Examples In statistical hypothesis testing, the alternative hypothesis is an important proposition in the hypothesis test. The goal of the hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of the alternative hypothesis instead of the defaul 7 min read
- Level of Significance-Definition, Steps and Examples Level of significance or Statistical significance is an important terminology used in Statistics. Level of significance is the measurement of the statistical significance. The level of significance explains whether the null hypothesis is accepted or rejected. In this article, we are going to discuss 7 min read
- Cell Theory Notes - Definition, Parts, History, & Examples Cell Theory is a foundational biological principle stating that all living organisms are composed of cells, the cell is the basic unit of life, and all cells arise from pre-existing cells. Developed by scientists Schleiden, Schwann, and Virchow in the 19th century, this theory underscores the role o 8 min read
- First Derivative: Definition, Formulas, and Examples First Derivative Test is the test in calculus to find whether a function has a maximum or minimum value in the given interval. As the name suggests, the first derivative is used in this test to find the critical point and then further conditions are used to check each critical point for extrema. Man 14 min read
- Algebraic Expressions in Math: Definition, Example and Equation Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used to define unknown conditions in real life or situations that include unknown variables. An algebraic expression is made up of term 8 min read
- Hypothesis Testing Formula Statistics is a discipline of applied mathematics that deals with gathering, describing, analyzing, and inferring conclusions from numerical data. Differential and integral calculus, linear algebra, and probability theory are all used substantially in statistics' mathematical theories. Statisticians 8 min read
- Difference Between Hypothesis And Theory Understanding the difference between a hypothesis and a theory is important in scientific research. A hypothesis is an educated guess or proposed explanation for a phenomenon, based on limited evidence and requiring further investigation. While, a theory is a well-substantiated explanation of an asp 5 min read
- Real-life Applications of Hypothesis Testing Hypothesis testing is a fundamental statistical concept that helps us to conclude larger groups based on smaller samples. It offers a systematic approach to conclude population characteristics from observed sample data. It's like making educated guesses and then collecting data to see if our guesses 6 min read
- Econometrics : Meaning, Examples, Theory and Methods What is Econometrics?Econometrics is a branch of economics that applies statistical methods and mathematical models to analyze economic data. It combines economic theory, mathematics, and statistical techniques to quantify and test hypotheses about economic relationships. Econometric analysis is use 10 min read
- Real Life Examples and Applications of Power Set The concept of power sets is a fundamental topic in set theory with a wide range of real-life applications. A power set is essentially a set of all possible subsets of a given set, including the empty set and the set itself. This means if you have a set with three elements, its power set will contai 6 min read
- How do you define and measure your product hypothesis? Hypothesis in product management is like making an educated guess or assumption about something related to a product, such as what users need or how a new feature might work. It's a statement that you can test to see if it's true or not, usually by trying out different ideas and seeing what happens. 11 min read
- What are Descriptive Analytics? Working and Examples Descriptive analytics helps to identify important patterns and trends in large datasets. In comparison to all other methods of data analysis, descriptive is the most used one. The main task of descriptive analytics is to create metrics and key performance indicators for use in dashboards and busines 10 min read
- Equal Sets: Definition, Cardinality, and Venn Diagram Equal Set is the relation between two sets that tells us about the equality of two sets i.e., all the elements of both sets are the same and both sets have the same number of elements as well. As we know, a set is a well-defined collection of objects where no two objects can be the same, and sets ca 9 min read
- What is Binomial Probability Distribution with Example? In a binomial distribution, the probability of achieving success must stay consistent across the trials being examined. For instance, when tossing a coin, the probability of landing heads is always ½ for each trial, as there are only two possible outcomes.Explanation: Probability is the likelihood o 6 min read
- Set Theory - Definition, Types, Operations Set Theory is a branch of logical mathematics that studies the collection of objects and operations based on it. A set is simply a collection of objects or a group of objects. For example, a group of players in a football team is a set and the players in the team are its objects. The words collectio 10 min read
- Probability Theorems | Theorems and Examples What is Probability?Probability can be defined as the possibility of occurrence of an event. Probability is the likelihood or the chances that an uncertain event will occur. The probability of an event always lies between 0 and 1. [Tex]Probability(P)=\frac{Favourable~Outcomes}{Total~Outcomes} [/Tex] 10 min read
- Introduction of Statistics and its Types Statistics and its Types: Statistics is a branch of math focused on collecting, organizing, and understanding numerical data. It involves analyzing and interpreting data to solve real-life problems, using various quantitative models. Some view statistics as a separate scientific discipline rather th 15+ min read
- Collection and Presentation of Data We come across a lot of information every day from different sources. Our newspapers, TV, Phone and the Internet, etc are the sources of information in our life. This information can be related to anything, from bowling averages in cricket to profits of the company over the years. These facts and fi 10 min read
- Geeks Premier League
- School Learning
- Geeks Premier League 2023
- Maths-Class-12
Improve your Coding Skills with Practice
What kind of Experience do you want to share?
- Privacy Policy
Home » What is a Hypothesis – Types, Examples and Writing Guide
What is a Hypothesis – Types, Examples and Writing Guide
Table of Contents
In research, a hypothesis is a clear, testable statement predicting the relationship between variables or the outcome of a study. Hypotheses form the foundation of scientific inquiry, providing a direction for investigation and guiding the data collection and analysis process. Hypotheses are typically used in quantitative research but can also inform some qualitative studies by offering a preliminary assumption about the subject being explored.
A hypothesis is a specific, testable prediction or statement that suggests an expected relationship between variables in a study. It acts as a starting point, guiding researchers to examine whether their predictions hold true based on collected data. For a hypothesis to be useful, it must be clear, concise, and based on prior knowledge or theoretical frameworks.
Key Characteristics of a Hypothesis :
- Testable : Must be possible to evaluate or observe the outcome through experimentation or analysis.
- Specific : Clearly defines variables and the expected relationship or outcome.
- Predictive : States an anticipated effect or association that can be confirmed or refuted.
Example : “Increasing the amount of daily physical exercise will lead to a reduction in stress levels among college students.”
Types of Hypotheses
Hypotheses can be categorized into several types, depending on their structure, purpose, and the type of relationship they suggest. The most common types include null hypothesis , alternative hypothesis , directional hypothesis , and non-directional hypothesis .
1. Null Hypothesis (H₀)
Definition : The null hypothesis states that there is no relationship between the variables being studied or that any observed effect is due to chance. It serves as the default position, which researchers aim to test against to determine if a significant effect or association exists.
Purpose : To provide a baseline that can be statistically tested to verify if a relationship or difference exists.
Example : “There is no difference in academic performance between students who receive additional tutoring and those who do not.”
2. Alternative Hypothesis (H₁ or Hₐ)
Definition : The alternative hypothesis proposes that there is a relationship or effect between variables. This hypothesis contradicts the null hypothesis and suggests that any observed result is not due to chance.
Purpose : To present an expected outcome that researchers aim to support with data.
Example : “Students who receive additional tutoring will perform better academically than those who do not.”
3. Directional Hypothesis
Definition : A directional hypothesis specifies the direction of the expected relationship between variables, predicting either an increase, decrease, positive, or negative effect.
Purpose : To provide a more precise prediction by indicating the expected direction of the relationship.
Example : “Increasing the duration of daily exercise will lead to a decrease in stress levels among adults.”
4. Non-Directional Hypothesis
Definition : A non-directional hypothesis states that there is a relationship between variables but does not specify the direction of the effect.
Purpose : To allow for exploration of the relationship without committing to a particular direction.
Example : “There is a difference in stress levels between adults who exercise regularly and those who do not.”
Examples of Hypotheses in Different Fields
- Null Hypothesis : “There is no difference in anxiety levels between individuals who practice mindfulness and those who do not.”
- Alternative Hypothesis : “Individuals who practice mindfulness will report lower anxiety levels than those who do not.”
- Directional Hypothesis : “Providing feedback will improve students’ motivation to learn.”
- Non-Directional Hypothesis : “There is a difference in motivation levels between students who receive feedback and those who do not.”
- Null Hypothesis : “There is no association between diet and energy levels among teenagers.”
- Alternative Hypothesis : “A balanced diet is associated with higher energy levels among teenagers.”
- Directional Hypothesis : “An increase in employee engagement activities will lead to improved job satisfaction.”
- Non-Directional Hypothesis : “There is a relationship between employee engagement activities and job satisfaction.”
- Null Hypothesis : “The introduction of green spaces does not affect urban air quality.”
- Alternative Hypothesis : “Green spaces improve urban air quality.”
Writing Guide for Hypotheses
Writing a clear, testable hypothesis involves several steps, starting with understanding the research question and selecting variables. Here’s a step-by-step guide to writing an effective hypothesis.
Step 1: Identify the Research Question
Start by defining the primary research question you aim to investigate. This question should be focused, researchable, and specific enough to allow for hypothesis formation.
Example : “Does regular physical exercise improve mental well-being in college students?”
Step 2: Conduct Background Research
Review relevant literature to gain insight into existing theories, studies, and gaps in knowledge. This helps you understand prior findings and guides you in forming a logical hypothesis based on evidence.
Example : Research shows a positive correlation between exercise and mental well-being, which supports forming a hypothesis in this area.
Step 3: Define the Variables
Identify the independent and dependent variables. The independent variable is the factor you manipulate or consider as the cause, while the dependent variable is the outcome or effect you are measuring.
- Independent Variable : Amount of physical exercise
- Dependent Variable : Mental well-being (measured through self-reported stress levels)
Step 4: Choose the Hypothesis Type
Select the hypothesis type based on the research question. If you predict a specific outcome or direction, use a directional hypothesis. If not, a non-directional hypothesis may be suitable.
Example : “Increasing the frequency of physical exercise will reduce stress levels among college students” (directional hypothesis).
Step 5: Write the Hypothesis
Formulate the hypothesis as a clear, concise statement. Ensure it is specific, testable, and focuses on the relationship between the variables.
Example : “College students who exercise at least three times per week will report lower stress levels than those who do not exercise regularly.”
Step 6: Test and Refine (Optional)
In some cases, it may be necessary to refine the hypothesis after conducting a preliminary test or pilot study. This ensures that your hypothesis is realistic and feasible within the study parameters.
Tips for Writing an Effective Hypothesis
- Use Clear Language : Avoid jargon or ambiguous terms to ensure your hypothesis is easily understandable.
- Be Specific : Specify the expected relationship between the variables, and, if possible, include the direction of the effect.
- Ensure Testability : Frame the hypothesis in a way that allows for empirical testing or observation.
- Focus on One Relationship : Avoid complexity by focusing on a single, clear relationship between variables.
- Make It Measurable : Choose variables that can be quantified or observed to simplify data collection and analysis.
Common Mistakes to Avoid
- Vague Statements : Avoid vague hypotheses that don’t specify a clear relationship or outcome.
- Unmeasurable Variables : Ensure that the variables in your hypothesis can be observed, measured, or quantified.
- Overly Complex Hypotheses : Keep the hypothesis simple and focused, especially for beginner researchers.
- Using Personal Opinions : Avoid subjective or biased language that could impact the neutrality of the hypothesis.
Examples of Well-Written Hypotheses
- Psychology : “Adolescents who spend more than two hours on social media per day will report higher levels of anxiety than those who spend less than one hour.”
- Business : “Increasing customer service training will improve customer satisfaction ratings among retail employees.”
- Health : “Consuming a diet rich in fruits and vegetables is associated with lower cholesterol levels in adults.”
- Education : “Students who participate in active learning techniques will have higher retention rates compared to those in traditional lecture-based classrooms.”
- Environmental Science : “Urban areas with more green spaces will report lower average temperatures than those with minimal green coverage.”
A well-formulated hypothesis is essential to the research process, providing a clear and testable prediction about the relationship between variables. Understanding the different types of hypotheses, following a structured writing approach, and avoiding common pitfalls help researchers create hypotheses that effectively guide data collection, analysis, and conclusions. Whether working in psychology, education, health sciences, or any other field, an effective hypothesis sharpens the focus of a study and enhances the rigor of research.
- Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). SAGE Publications.
- Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). SAGE Publications.
- Trochim, W. M. K. (2006). The Research Methods Knowledge Base (3rd ed.). Atomic Dog Publishing.
- McLeod, S. A. (2019). What is a Hypothesis? Retrieved from https://www.simplypsychology.org/what-is-a-hypotheses.html
- Walliman, N. (2017). Research Methods: The Basics (2nd ed.). Routledge.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Data Analysis – Process, Methods and Types
Survey Instruments – List and Their Uses
Implications in Research – Types, Examples and...
Research Project – Definition, Writing Guide and...
References in Research – Types, Examples and...
APA Table of Contents – Format and Example
- Scientific Methods
What is Hypothesis?
We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.
A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.
Characteristics of Hypothesis
Following are the characteristics of the hypothesis:
- The hypothesis should be clear and precise to consider it to be reliable.
- If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
- The hypothesis must be specific and should have scope for conducting more tests.
- The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.
Sources of Hypothesis
Following are the sources of hypothesis:
- The resemblance between the phenomenon.
- Observations from past studies, present-day experiences and from the competitors.
- Scientific theories.
- General patterns that influence the thinking process of people.
Types of Hypothesis
There are six forms of hypothesis and they are:
- Simple hypothesis
- Complex hypothesis
- Directional hypothesis
- Non-directional hypothesis
- Null hypothesis
- Associative and casual hypothesis
Simple Hypothesis
It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.
Complex Hypothesis
It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.
Directional Hypothesis
It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.
Non-directional Hypothesis
It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.
Null Hypothesis
It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.
Associative and Causal Hypothesis
Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.
Examples of Hypothesis
Following are the examples of hypotheses based on their types:
- Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
- All lilies have the same number of petals is an example of a null hypothesis.
- If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.
Functions of Hypothesis
Following are the functions performed by the hypothesis:
- Hypothesis helps in making an observation and experiments possible.
- It becomes the start point for the investigation.
- Hypothesis helps in verifying the observations.
- It helps in directing the inquiries in the right direction.
How will Hypothesis help in the Scientific Method?
Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:
- Formation of question
- Doing background research
- Creation of hypothesis
- Designing an experiment
- Collection of data
- Result analysis
- Summarizing the experiment
- Communicating the results
Frequently Asked Questions – FAQs
What is hypothesis.
A hypothesis is an assumption made based on some evidence.
Give an example of simple hypothesis?
What are the types of hypothesis.
Types of hypothesis are:
- Associative and Casual hypothesis
State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.
Define complex hypothesis..
A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.
Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!
Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz
Visit BYJU’S for all Physics related queries and study materials
Your result is as below
Request OTP on Voice Call
Leave a Comment Cancel reply
Your Mobile number and Email id will not be published. Required fields are marked *
Post My Comment
Register with BYJU'S & Download Free PDFs
Register with byju's & watch live videos.
- Essay Editor
How to Write a Hypothesis: Step-By-Step Guide
A hypothesis is a testable statement that guides scientific research. Want to know how to write a hypothesis for your research paper? This guide will show you the key steps involved, including defining your variables and phrasing your hypothesis correctly.
Key Takeaways
- A hypothesis is a testable statement proposed for investigation, grounded in existing knowledge, essential for guiding scientific research.
- Understanding different types of hypotheses, including simple, complex, null, and alternative, is crucial for selecting appropriate research approaches.
- Crafting a strong hypothesis involves a systematic process including defining variables, phrasing it as an if-then statement, and ensuring it is clear, specific, and testable.
Understanding a Hypothesis
An empirical hypothesis is not just a simple guess. It represents a preliminary concept that stands to be scrutinized through Research and experimentation. A well-constructed hypothesis is a fundamental component of the scientific method, guiding experiments and leading to conclusions. Within the realm of science, such hypotheses are crafted after an extensive examination of current knowledge, ensuring their foundation on already established evidence prior to beginning any new inquiry.
Essentially, a hypothesis in the scientific community must present itself as something capable of being tested, this characteristic distinguishes it from mere speculation by allowing its potential verification or falsification through methodical scrutiny. Hypotheses serve as crucial instruments within scientific studies, directing these investigations toward particular queries and forming the backbone upon which all experiments rest in their pursuit for advancements in comprehension.
When formulating a hypothesis for testing within research activities, one should employ language that remains neutral and detached from subjective bias thereby bolstering the legitimacy of outcomes produced during the study. This precision fosters greater confidence in results obtained under rigorous evaluation standards among peers.
Characteristics of a Good Hypothesis
A good hypothesis is the cornerstone of any successful scientific research. It should be clear, concise, and testable, providing a solid foundation for your investigation. Here are some key characteristics that define a good hypothesis:
- Clarity : A good hypothesis should be easy to understand and clearly state the expected outcome of the research. For example , “Increased exposure to sunlight will result in taller plant growth” is a clear and straightforward hypothesis.
- Conciseness : Avoid unnecessary complexity or jargon. A concise hypothesis is brief and to the point, making it easier to test and analyze. For instance, “Exercise improves mental health” is concise and direct.
- Testability : A good hypothesis must be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, “Consuming vitamin C reduces the duration of the common cold” is a testable hypothesis.
- Relevance : Ensure your hypothesis is relevant to the research question or problem and aligned with your research objectives. For example, if your research question is about the impact of diet on health, a relevant hypothesis could be “A high-fiber diet reduces the risk of heart disease.”
- Specificity : A good hypothesis should be specific and focused on a particular aspect of the research question. For example, “Daily meditation reduces stress levels in college students” is specific and targeted.
- Measurability : Your hypothesis should be measurable, meaning it can be quantified or observed. For example, “Regular physical activity lowers blood pressure” is a measurable hypothesis.
By ensuring your hypothesis possesses these characteristics, you set a strong foundation for your scientific research, guiding your investigation towards meaningful and reliable results.
Types of Hypotheses
Scientific research incorporates a range of research hypotheses, which are crucial for proposing relationships between different variables and steering the direction of the investigation. These seven unique forms of hypotheses cater to diverse needs within the realm of scientific inquiry.
Comprehending these various types is essential in selecting an appropriate method for conducting research. To delve into details, we have simple, complex, null and alternative hypotheses. Each brings its distinct features and practical implications to the table. It underscores why recognizing how they diverge and what purposes they serve is fundamental in any scientific study.
Simple Hypothesis
A basic hypothesis suggests a fundamental relationship between two elements: the independent and dependent variable. Take, for example, a hypothesis that says, “The taller growth of plants (dependent variable) is due to increased exposure to sunlight (independent variable).” Such hypotheses are clear-cut and easily testable as they concentrate on one direct cause-and-effect link.
These types of straightforward hypotheses are very beneficial in scientific experiments because they permit the isolation of variables for precise outcome measurement. Their simplicity lends itself well to being an essential component in conducting scientific research, thanks to their unambiguous nature and targeted focus on specific relationships.
Complex Hypothesis
Alternatively, a complex hypothesis proposes an interconnection amongst several variables. It builds on the concept of numerous variable interactions within research parameters. Take for instance a causal hypothesis which asserts that sustained alcohol consumption (the independent variable) leads to liver impairment (the dependent variable), with additional influences like use duration and general health results impacting this relationship.
Involving various factors, complex hypotheses reveal the nuanced interaction of elements that affect results. Although they provide extensive insight into studied phenomena, such hypotheses necessitate advanced research frameworks and analysis techniques to be understood properly.
Null Hypothesis
In the realm of hypothesis testing, the null hypothesis (H0) serves as a fundamental presumption suggesting that there exists no association between the variables under investigation. It posits that variations within the dependent variable are attributed to random chance and not an influential relationship. Take for instance a null hypothesis which could propose “There is no impact of sleep duration on productivity levels.”
The significance of the null hypothesis lies in its role as a reference point which researchers strive to refute during their investigations. Upon uncovering statistical evidence indicative of a substantial linkage, it becomes necessary to discard the null hypothesis. The act of rejecting this foundational assumption is critical for affirming research findings and assessing their importance with respect to outcomes observed.
Alternative Hypothesis
The alternative hypothesis, often represented by H1 or Ha, contradicts the null hypothesis and proposes a meaningful link between variables under examination. For example, where the null hypothesis asserts that a particular medication is ineffective, the alternative might posit that “Compared to placebo treatment, the new drug yields beneficial effects.”
By claiming outcomes are non-random and carry weight, the alternative hypothesis bolsters theoretical assertions. Its testable prediction propels scientific investigation forward as it aims either to corroborate or debunk what’s posited by the null hypothesis.
Consider an assertive statement like “Productivity is influenced by sleep duration” which serves as a crisp articulation of an alternative hypothesis.
Steps to Write a Hypothesis
Crafting a hypothesis is a methodical process that begins with curiosity and culminates in a testable prediction. Writing a hypothesis involves following structured steps to ensure clarity, focus, and researchability. Steps include asking a research question, conducting preliminary research, defining variables, and phrasing the hypothesis as an if-then statement.
Each step is critical in formulating a strong hypothesis to guide research and lead to meaningful discoveries.
Ask a Research Question
A well-defined research question forms the cornerstone of a strong hypothesis, guiding your investigation towards a significant and targeted exploration. By rooting this question in observations and existing studies, it becomes pertinent and ripe for research. For example, noting that certain snacks are more popular could prompt the inquiry: “Does providing healthy snack options in an office setting enhance employee productivity?”.
Such a thoughtfully constructed question lays the groundwork for your research hypothesis, steering your scholarly work to be concentrated and purposeful.
Conduct Preliminary Research
Begin your research endeavor by conducting preliminary investigations into established theories, past studies, and available data. This initial stage is crucial as it equips you with a comprehensive background to craft an informed hypothesis while pinpointing any existing voids in current knowledge. Understanding the concept of a statistical hypothesis can also be beneficial, as it involves drawing conclusions about a population based on a sample and applying statistical evidence.
By reviewing literature and examining previously published research papers, one can discern the various variables of interest and their interconnections. Should the findings from these early inquiries refute your original hypothesis, adjust it accordingly so that it resonates with already recognized evidence.
Define Your Variables
A well-formed hypothesis should unambiguously identify the independent and dependent variables involved. In an investigation exploring how plant growth is affected by sunlight, for instance, plant height represents the dependent variable, while the quantity of sunlight exposure constitutes the independent variable.
It is essential to explicitly state all the variables included in a study so that the hypothesis can be tested with accuracy and specificity. Defining these variables distinctly facilitates a targeted and quantifiable examination.
Phrase as an If-Then Statement
A good hypothesis is typically structured in the form of if-then statements, allowing for a clear demonstration of the anticipated link between different variables. Take, for example, stating that administering drug X could result in reduced fatigue among patients. This outcome would be especially advantageous to individuals receiving cancer therapy. The structure aids in explicitly defining the cause-and-effect dynamic.
In order to craft a strong hypothesis, it should be capable of being tested and grounded on existing knowledge or theoretical frameworks. It should also be framed as a statement that can potentially be refuted by experimental data, which qualifies it as a solidly formulated hypothesis.
Collect Data to Support Your Hypothesis
Once you have formulated a hypothesis, the next crucial step is to collect data to support or refute it. This involves designing and conducting experiments or studies that test the hypothesis, and collecting and analyzing data to determine whether the hypothesis holds true.
Here are the key steps in collecting data to support your hypothesis:
- Designing an Experiment or Study : Start by identifying your research question or problem. Design a study or experiment that specifically tests your hypothesis. For example, if your hypothesis is “Daily exercise improves cognitive function,” design an experiment that measures cognitive function in individuals who exercise daily versus those who do not.
- Collecting Data : Gather data through various methods such as experiments, surveys, observations, or other techniques. Ensure your data collection methods are reliable and valid. For instance, use standardized tests to measure cognitive function in your exercise study.
- Analyzing Data : Use statistical methods or other techniques to analyze the data. This step involves determining whether the data supports or refutes your hypothesis. For example, use statistical tests to compare cognitive function scores between the exercise and non-exercise groups .
- Interpreting Results : Interpret the results of your data analysis to determine whether your hypothesis is supported. For instance, if the exercise group shows significantly higher cognitive function scores, your hypothesis is supported. If not, you may need to refine your hypothesis or explore other variables.
By following these steps, you can systematically collect and analyze data to support or refute your hypothesis, ensuring your research is grounded in empirical evidence.
Refining Your Hypothesis
To ensure your hypothesis is precise, comprehensible, verifiable, straightforward, and pertinent, you must refine it meticulously. Creating a compelling hypothesis involves careful consideration of its transparency, purposeful direction and the potential results. This requires unmistakably delineating the subject matter and central point of your experiment.
Your hypothesis should undergo stringent examination to remove any uncertainties and define parameters that guarantee both ethical integrity and scientific credibility. An effective hypothesis not only questions prevailing assumptions, but also maintains an ethically responsible framework.
Testing Your Hypothesis
Having a robust research methodology is essential for efficiently evaluating your hypothesis. It is important to ensure that the integrity and validity of the research are upheld through adherence to ethical standards. The data gathered ought to be both representative and tailored specifically towards validating or invalidating the hypothesis.
In order to ascertain whether there’s any significant difference, statistical analyses measure variations both within and across groups. Frequently, the decision on whether to discard the null hypothesis hinges on establishing a p-value cut-off point, which conventionally stands at 0.05.
Tips for Writing a Research Hypothesis
Writing a research hypothesis can be a challenging task, but with the right approach, you can craft a strong and testable hypothesis. Here are some tips to help you write a research hypothesis:
- Start with a Research Question : A good hypothesis starts with a clear and focused research question. For example, “Does regular exercise improve mental health?” can lead to a hypothesis like “Regular exercise reduces symptoms of depression.”
- Conduct Preliminary Research : Conducting preliminary research helps you identify a knowledge gap in your field and develop a hypothesis that is relevant and testable. Review existing literature and studies to inform your hypothesis.
- Use Clear and Concise Language : A good hypothesis should be easy to understand and use clear and concise language. Avoid jargon and complex terms. For example, “Increased screen time negatively impacts sleep quality” is clear and straightforward.
- Avoid Ambiguity and Vagueness : Ensure your hypothesis is free from ambiguity and vagueness. Clearly state the expected outcome of the research. For example, “Consuming caffeine before bedtime reduces sleep duration” is specific and unambiguous.
- Make Sure It Is Testable : A good hypothesis should be testable and falsifiable, meaning it can be proven or disproven through scientific research methods. For example, “A high-protein diet increases muscle mass” is a testable hypothesis.
- Use Existing Knowledge and Research : Base your hypothesis on existing knowledge and research. Align it with your research objectives and ensure it is grounded in established theories or findings.
Common mistakes to avoid when writing a research hypothesis include:
- Making It Too Broad or Too Narrow : A good hypothesis should be specific and focused on a particular aspect of the research question. Avoid overly broad or narrow hypotheses.
- Making It Too Vague or Ambiguous : Ensure your hypothesis is clear and concise, avoiding ambiguity and vagueness.
- Failing to Make It Testable : A good hypothesis should be testable and falsifiable. Ensure it can be proven or disproven through scientific research methods.
- Failing to Use Existing Knowledge and Research : Base your hypothesis on existing knowledge and research. Align it with your research objectives and ensure it is grounded in established theories or findings.
By following these tips and avoiding common mistakes, you can write a strong and testable research hypothesis that will guide your scientific investigation towards meaningful and reliable results.
Examples of Good and Bad Hypotheses
A well-constructed hypothesis is distinct, precise, and capable of being empirically verified. To be considered a good hypothesis, it must offer measurable and examinable criteria through experimental means. Take the claim “Working from home boosts job satisfaction” as an example. This posits a testable outcome related to work environments.
On the other hand, a subpar hypothesis such as “Garlic repels vampires” falls short because it hinges on fantastical elements that cannot be substantiated or refuted in reality. The ability to distinguish between strong and weak hypotheses plays an essential role in conducting successful research.
Importance of a Testable Hypothesis
A hypothesis that can be subjected to testing forms the basis of a scientific experiment, outlining anticipated results. For a hypothesis to qualify as testable, it must possess key attributes such as being able to be falsified and verifiable or disprovable via experimental means. It serves as an essential platform for conducting fresh research with the potential to confirm or debunk it.
Crafting a robust testable hypothesis yields clear forecasts derived from previous studies. Should both the predictions and outcomes stemming from a hypothesis lack this critical aspect of testability, they will remain ambiguous, rendering the associated experiment ineffective in conclusively proving or negating anything of substance.
In summary, crafting a strong hypothesis constitutes an essential ability within the realm of scientific research. Grasping the various forms of hypotheses and mastering the process for their formulation and refinement are critical to establishing your research as solid and significant. It is crucial to underscore that having a testable hypothesis serves as the bedrock for successful scientific investigation.
Frequently Asked Questions
How can you formulate a hypothesis.
To formulate a hypothesis, first state the question your experiment aims to answer and identify the independent and dependent variables.
Then create an “If, Then” statement that succinctly defines the relationship between these variables.
What is a hypothesis in scientific research?
In the research process, a hypothesis acts as a tentative concept that is put forward for additional scrutiny and examination, establishing the bedrock upon which scientific experiments are built. It steers the course of research by forecasting possible results.
What are the different types of hypotheses?
Hypotheses can be classified into simple, complex, null, and alternative types, each type fulfilling distinct roles in scientific research.
Understanding these differences is crucial for effective hypothesis formulation.
How do I write a hypothesis?
To write a hypothesis, start by formulating a research question and conducting preliminary research.
Then define your variables and express your hypothesis in the form of an if-then statement.
Why is a testable hypothesis important?
Having a testable hypothesis is vital because it provides a definitive structure for conducting research, allowing for particular predictions that experimentation can either verify or refute.
Such an element significantly improves the process of scientific investigation.
Related articles
Structure of the essay: essential tips and guidelines.
When the time to apply for college comes, you will be expected to know how to structure an essay. The basic components of an essay structure are fairly straightforward, and once you learn them, you will gain the necessary skills in writing. Students everywhere are expected to have mastered this by the time they are ready for college. What is more difficult is structuring essays appropriately with the ideas at hand. We will discuss how to do this correctly in the sections below. The important t ...
How to Write an Argumentative Essay: Tips & Examples
Want to learn how to write an argumentative essay? This guide will walk you through creating a strong thesis, finding credible evidence, and addressing counterarguments. By the end of the article, you'll be equipped with everything you need to write a persuasive and well-structured argumentative essay. Key Takeaways * An argumentative essay requires a clear stance on a debatable topic, supported by structured arguments and credible evidence to persuade the reader. * Key elements include a s ...
How Many Paragraphs Is an Essay | Essential Guide for Writers
How many paragraphs is an essay? Typically, an essay includes an introduction, several body paragraphs, and a conclusion. The exact number of body paragraphs depends on your essay's length and complexity. In this guide, you'll learn how to determine the appropriate number of paragraphs for different types of essays. Key Takeaways * Essays are structured into three main parts: introduction, body paragraphs, and conclusion, with each paragraph focusing on a single main idea. * The number of p ...
How to Write an Essay Outline
Before you dive into creating your essay, you must complete an essay outline. It can be a requested part of the general assignment; however, it may also serve as a valuable tool for the more productive writing process. An outline is essentially a skeleton or the backbone of the entire essay; It includes a thesis statement and its main supporting points. In this article, you will learn how to write an essay outline for your research paper, what parts the essays consist of, and what steps help cr ...
How to Title an Essay: Best Tips and Tricks for Perfect Headings
Struggling with how to title an essay? This guide provides simple tips to brainstorm and refine essay title ideas to create engaging and accurate titles for your essays. Key Takeaways * A captivating essay title must be clear, relevant, and engaging to effectively summarize the content and attract readers. * Incorporating keywords, avoiding jargon, and using active voice enhances the searchability and accessibility of your essay title. * The ideal essay's title should be concise (5-10 word ...
Top Argumentative Essay Topics for 2025
Looking for the best argumentative essay topics for 2025? This article offers 350 top topics to spark your imagination and fuel your writing. From technology and health to education and social issues, we cover a wide range of subjects. Dive in to find the perfect topic, learn how to select compelling issues, and get tips for crafting persuasive arguments. Key Takeaways * Argumentative essays aim to persuade readers by presenting well-researched opinions and addressing counterarguments for a ...
What Is Plagiarism? Definition, Types & Examples
Plagiarism is using someone else’s work or ideas without giving credit. It’s a serious breach of academic integrity and can include copying text, improper paraphrasing, or reusing your own previous work. This article will cover the plagiarism definition, common forms, reasons to avoid it, and tips for proper citation and paraphrasing. Key Takeaways * Plagiarism is a serious violation of academic integrity, defined as using someone else’s ideas or words without proper attribution, and include ...
APA Image Citation: Clear Guidelines and Examples
Need to cite an image in APA style for your academic piece? This guide covers everything you need to know about APA image citation, from digital sources to museum artifacts. Read on to ensure you credit images correctly in your work. Key Takeaways * APA image citation requires the inclusion of the creator's name, date, title, and source for accurate credit attribution. * Different citation formats apply to online images, stock images, museum pieces, and other visual media like infographics ...
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
How to Write a Great Hypothesis
Hypothesis Definition, Format, Examples, and Tips
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk, "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.
Verywell / Alex Dos Diaz
- The Scientific Method
Hypothesis Format
Falsifiability of a hypothesis.
- Operationalization
Hypothesis Types
Hypotheses examples.
- Collecting Data
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.
Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."
At a Glance
A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.
The Hypothesis in the Scientific Method
In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:
- Forming a question
- Performing background research
- Creating a hypothesis
- Designing an experiment
- Collecting data
- Analyzing the results
- Drawing conclusions
- Communicating the results
The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.
Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.
In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.
Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.
In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.
In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."
In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."
Elements of a Good Hypothesis
So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:
- Is your hypothesis based on your research on a topic?
- Can your hypothesis be tested?
- Does your hypothesis include independent and dependent variables?
Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read . Many authors will suggest questions that still need to be explored.
How to Formulate a Good Hypothesis
To form a hypothesis, you should take these steps:
- Collect as many observations about a topic or problem as you can.
- Evaluate these observations and look for possible causes of the problem.
- Create a list of possible explanations that you might want to explore.
- After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.
In the scientific method , falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.
Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.
One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.
The Importance of Operational Definitions
A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.
Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.
For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.
These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.
Replicability
One of the basic principles of any type of scientific research is that the results must be replicable.
Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.
Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.
To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.
Hypothesis Checklist
- Does your hypothesis focus on something that you can actually test?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate the variables?
- Can your hypothesis be tested without violating ethical standards?
The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:
- Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
- Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
- Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
- Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
- Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
- Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.
A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you change the independent variable .
The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."
A few examples of simple hypotheses:
- "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
- "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."
- "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
- "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."
Examples of a complex hypothesis include:
- "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
- "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."
Examples of a null hypothesis include:
- "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
- "There is no difference in scores on a memory recall task between children and adults."
- "There is no difference in aggression levels between children who play first-person shooter games and those who do not."
Examples of an alternative hypothesis:
- "People who take St. John's wort supplements will have less anxiety than those who do not."
- "Adults will perform better on a memory task than children."
- "Children who play first-person shooter games will show higher levels of aggression than children who do not."
Collecting Data on Your Hypothesis
Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.
Descriptive Research Methods
Descriptive research such as case studies , naturalistic observations , and surveys are often used when conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.
Once a researcher has collected data using descriptive methods, a correlational study can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.
Experimental Research Methods
Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).
Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.
The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.
Thompson WH, Skau S. On the scope of scientific hypotheses . R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607
Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:]. Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z
Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004
Nosek BA, Errington TM. What is replication ? PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691
Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies . Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18
Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
- Study Documents
- Learning Tools
Writing Guides
- Citation Generator
- Flash Card Generator
- Homework Help
- Essay Examples
- Essay Title Generator
- Essay Topic Generator
- Essay Outline Generator
- Flashcard Generator
- Plagiarism Checker
- Paraphrasing Tool
- Conclusion Generator
- Thesis Statement Generator
- Introduction Generator
- Literature Review Generator
- Hypothesis Generator
- Human Editing Service
- Essay Hook Generator
Writing Guides / How to Write a Hypothesis w/ Strong Examples
How to Write a Hypothesis w/ Strong Examples
A hypothesis is a guess about what’s going to happen. In research, the hypothesis is what you the researcher expects the outcome of an experiment, a study, a test, or a program to be. It is a belief based on the evidence you have before you, the reasoning of your mind, and what prior experience tells you. The hypothesis is not 100% guaranteed—that’s why there are different kinds of hypotheses. In this article, we’ll explain what those are when they should be used. So let’s dive in!
What is a Hypothesis / Definition
A hypothesis is like a bet: you size things up and tell your mates exactly what you think is going to happen with respect to X, Y, Z. It can also be like an explanation for a phenomenon, or a logical prediction of a possible causal correlation among multiple factors. In science—or, really, in any field, a hypothesis is used as a basis for further investigation. For example, many qualitative or exploratory studies are conducted just so that the researcher in the end can formulate a hypothesis after all the data is collected an analyzed.
In short, it is an educated guess, based on existing knowledge or observation. It is a way of proposing a possible explanation for a relationship between variables.
One thing to remember is this: the key characteristic of a hypothesis is that it must be testable and potentially falsifiable. This means that it should be possible to design an experiment or observation that could potentially prove the hypothesis wrong. That is a very important point to keep in mind.
For that reason, hypotheses are usually only formulated after conducting a preliminary review of existing literature, observations, or after obtaining a general understanding of the subject area. They are not random guesses. They are grounded in some form of evidence or understanding of the phenomena being studied. The formulation of a hypothesis is a big step in the scientific method, as it defines the focus and direction of the research. A lot of time is often spent simply on developing a good hypothesis.
Why? A well-constructed hypothesis not only proposes an explanation for an observation but also often predicts measurable and testable outcomes. It is not merely a question, but rather a statement that includes a clear explanation or prediction. For example, rather than asking “Does temperature affect the growth of bacteria?”, a hypothesis would be something like this: “If the temperature increases, then the growth rate of bacteria will increase.” It is clear, measurable, testable, and potentially falsifiable.
In the scientific community, a hypothesis is respected when it has the potential to advance knowledge, regardless of whether testing proves it to be true or false. The process of testing, refining, or nullifying hypotheses through experimentation and observation is part of what research is all about.
Different types of Hypotheses
Hypotheses can be categorized into several types. Each type has a unique purpose in scientific research. Understanding these types is helpful for formulating a hypothesis that is appropriate to your specific research question. The main types of hypotheses include the following:
- Simple Hypothesis : This formulates a relationship between two variables, one independent and one dependent. It is straightforward and concise, making it easy to test. It is most often used in basic scientific experiments where the aim is to investigate the relationship between two variables, such as in laboratory experiments or controlled field studies.
- Complex Hypothesis : Unlike the simple hypothesis, a complex hypothesis involves multiple independent and dependent variables. It is used in studies that are looking at several factors simultaneously, where there is an interplay of multiple variables. These are common in fields like social sciences, behavioral studies, and large-scale environmental research.
- Directional Hypothesis : This type predicts the nature of the effect of the independent variable on the dependent variable. It specifies the direction of the expected relationship. It tends to be used studies where prior research or theory has already suggested a specific direction of influence or effect, such as in clinical trials or in studies testing theoretical models.
- Non-directional Hypothesis : In contrast to the directional hypothesis, a non-directional hypothesis does not specify the direction of the relationship. It simply suggests that there is a relationship between variables without stating whether it is positive or negative. It is often used in exploratory research where the direction of the relationship is not known, such as in early-stage psychological research or when studying new phenomena.
- Null Hypothesis : The null hypothesis states that there is no relationship between the variables being studied. It is a default position that assumes no effect until evidence suggests otherwise. It is also a fundamental aspect of virtually all quantitative research, serving as the hypothesis that there is no effect or no difference, against which the alternative hypothesis is tested.
- Associative and Causal Hypotheses : Associative hypotheses propose a relationship between variables where changes in one variable correspond with changes in another. They are common in observational studies, such as epidemiological research or surveys, where the goal is to identify correlations between variables. Causal hypotheses go a step further by suggesting that one variable causes the change in the other. They are used in experimental research designed to determine cause-and-effect relationships, such as randomized controlled trials in medical research or controlled experiments in psychology.
View 120,000+ High Quality Essay Examples
Learn-by-example to improve your academic writing
How to Write a Good Hypothesis
Writing a good hypothesis is definitely a good skill to have in scientific research. But it is also one that you can definitely learn with some practice if you don’t already have it. Just keep in mind that the hypothesis is what sets the stage for the entire investigation. It guides the methods and analysis. Everything you do in research stems from your research question and hypothesis.
Here are four essential steps to follow when crafting a hypothesis:
- Start with a Research Question
Every hypothesis begins with a clear, focused research question. This question should arise from a review of existing literature, some observations you have made in the field, or an information gap that is apparent in current knowledge. The question should be specific and researchable. For example, instead of a broad question like “What affects plant growth?”, a more specific question would be “How does the amount of water affect the growth of sunflowers?” This is a specific question, and sets up a stage for a perfect hypothesis.
How did you develop the question? Easy. You simply took a broad view first, and then began looking more closely. You looked into the subject matter. And, as with anything, the more you look into it, the more likely you are to have questions. So, the most important step here is to get a sense of your subject. The more you learn about it, the more likely you will be to have a good research question. Ask yourself: what about this subject would I like to know more about? It helps if you have a genuine interest in the topic! Say, for example, you want to know more about cryptocurrency security or scalability: wouldn’t you start asking questions about how to achieve either? And wouldn’t you need to know a bit about the topic before you can ask the right question? Of course! Apply that same logic to whatever subject you are researching and your research question will appear rather quickly.
- Do Preliminary Research
Before formulating your hypothesis, you of course should conduct preliminary research. This involves reviewing existing literature, understanding the current state of knowledge in the field, doing some critical thinking on the subject, and considering any existing theories and findings that might be relevant. This preliminary research helps in developing an educated guess. If you do your background research well, your hypothesis will be grounded in existing knowledge.
This is basically the step that comes after you ask your research question but before you make a prediction about the subject matter. Just like if you went to a racetrack and wanted to place a bet on a horse, you would research the horses, the owners, the teams, and make an educated guess about which one is most likely to win, doing preliminary research is the same: you want to become very familiar with the topic—know it inside and out. Then you will have everything you need to formulate your hypothesis.
- Formulate the Hypothesis
Based on your research question and preliminary research, now you can create your hypothesis. A good hypothesis should be clear, concise, and testable. It typically takes a statement form, predicting a potential outcome or relationship between variables. Make sure that your hypothesis is focused and answers your research question. For example, a hypothesis for the research question stated above might be: “If sunflower plants are watered with varying amounts of water, then those watered more frequently will grow taller due to better hydration.”
Keep in mind that when you reach the stage of formulating your hypothesis, you are essentially ready to make a statement that can be tested through research or experimentation. Your hypothesis should be as precise as possible. Don’t ever use ambiguous language in your hypothesis. Also, you should be very specific about the variables involved and the expected relationship between them (if applicable). For example, let’s look at the hypothesis we generated above: “If sunflower plants are watered with varying amounts of water, then those watered more frequently will grow taller due to better hydration.” We have clearly identified the variables (frequency of watering and plant growth height) and the expected outcome.
But what else should your hypothesis do? Well, when we say it should address your research question, we mean it should be a logical extension of the question and your preliminary research. If your research question is about the effect of watering frequency on sunflower growth, your hypothesis should specifically predict how these two variables are related. It should not get into the types of soil, sunshine, temperature, or other variables unless these were brought up specifically in your research question.
Above all, you want your hypothesis to make a prediction. This means stating an expected outcome based on your understanding of the subject. The prediction is what will be tested through experiments or observations.
- Ensure Testability and Falsifiability
An important aspect of a good hypothesis is that it must be testable and potentially falsifiable. This means you should be able to conduct experiments or make observations that can support or refute the hypothesis. Avoid vague or broad statements that cannot be empirically tested. Also, make sure that your hypothesis is potentially falsifiable; i.e., there should exist the possibility that it can be proven wrong. For example, a hypothesis like “Sunflower plants need water to grow” is not falsifiable, as it is already a well-established fact. But a hypothesis regarding frequency or amount of watering does have the potential to be nullified.
Therefore, keep that in mind during this step: for a hypothesis to be testable, there must be a way to conduct an experiment or make observations that can confirm or disprove it. This means you should be able to measure or observe the variables involved. In the sunflower example, you can measure plant growth and control the frequency of watering very easily. This is precisely what makes the hypothesis testable.
Another important point is falsifiability, as this is what separates scientific hypotheses from non-scientific ones. If it doesn’t have the potential to be proven wrong, it’s not a hypothesis. Being falsifiable doesn’t mean a hypothesis is false. It means that if the hypothesis is false, there is a way to demonstrate this. The potential for falsification is what allows researchers to make scientific progress no matter the problem or field.
Also, don’t be vague. Your hypothesis needs to be specific: hypotheses that are too vague or broad are not useful in research, as there is no way to test them. For example, saying “Water affects plant growth” is too vague. How does water affect growth? Is it the amount, frequency, or type of water? Such a hypothesis needs to be more specific to be testable. See what we mean?
Remember: A hypothesis does not need to be correct. It just needs to be testable. It is a starting point for investigation. The value of a hypothesis lies in its ability to be tested. The results of that test are what can potentially contribute to the existing body of scientific knowledge, regardless of whether the hypothesis is supported or refuted by the resulting data.
Hypothesis Examples
Simple hypothesis examples.
- Increasing the amount of natural light in a classroom will improve students’ test scores.
- Drinking at least eight glasses of water a day reduces the frequency of headaches in adults.
- Plant growth is faster when the plant is exposed to music for at least one hour per day.
Complex Hypothesis Examples
- Students’ academic performance is influenced by their study habits, family income, and the educational level of their parents.
- Employee productivity is affected by workplace environment, job satisfaction, and the level of personal stress the worker encounters both on the job and at home.
- The effectiveness of a weight loss program is dependent on the participant’s age, gender, and adherence to an appropriate diet plan.
Directional Hypothesis Examples
- Exposure to high levels of air pollution during pregnancy will increase the risk of asthma in children.
- A diet high in antioxidants will decrease the risk of heart disease in middle-aged adults.
- Regular physical exercise leads to a significant decrease in the symptoms of depression in adults.
Non-directional Hypothesis Examples
- There is a relationship between the amount of sleep a person gets and their level of stress.
- A change in classroom environment has an effect on student concentration.
- The introduction of ergonomics in the workplace environment impacts employee productivity.
Null Hypothesis Examples
- There is no significant difference in test scores between students who study in groups and those who study alone.
- Dietary changes have no effect on the improvement of symptoms in patients with type 2 diabetes.
- The new marketing strategy does not affect the sales numbers of the product.
Associative Hypothesis Examples
- There is an association between the number of hours spent on social media and the level of anxiety in teenagers.
- Daily consumption of green tea is associated with weight loss in adults.
- The frequency of public transport use correlates with the level of urban air pollution.
Causal Hypotheses Examples
- Implementing a school-based exercise program causes a reduction in obesity rates among children.
- High levels of job stress cause an increase in blood pressure.
- Smoking causes an increase in the risk of developing lung cancer.
In conclusion, understanding and effectively formulating a solid hypothesis is what scientific research and inquiry is all about—regardless of the type of work you’re doing. It may be a simple, complex, directional, non-directional, null, associative, or causal hypothesis—no matter: each type has its own specific purpose and guides the direction of a study in a different way. A simple hypothesis explores the relationship between two variables, while a complex hypothesis involves multiple variables. Directional hypotheses specify the expected direction of a relationship, whereas non-directional hypotheses do not. The null hypothesis, a fundamental aspect of statistical testing, posits no effect or relationship, serving as a baseline for analysis. Associative hypotheses explore correlations between variables, and causal hypotheses aim to establish cause-and-effect relationships.
The ability to craft a clear, concise, and testable hypothesis is important for any researcher. It is what shapes the course of the investigation. It is also the backbone of the scientific method itself. A well-formulated hypothesis can lead to groundbreaking research or make significant contributions to knowledge in different fields.
As we have shown you with our examples, the hypothesis is more than a mere guess; it is an educated, testable prediction that guides you through the process of scientific discovery. When you master the art of hypothesis formulation, you can set off on your investigation with a clear roadmap and a clear sense of purpose.
Take the first step to becoming a better academic writer.
Writing tools.
- How to write a research proposal 2021 guide
- Guide to citing in MLA
- Guide to citing in APA format
- Chicago style citation guide
- Harvard referencing and citing guide
- How to complete an informative essay outline
How to Choose the Best Essay Topics
AI Text Detection Services
Unlock Your Writing Potential with Our AI Essay Writing Assistant
The Negative Impacts of Artificial Intelligence on Tactile Learning
How to Write a Hypothesis? Types and Examples
All research studies involve the use of the scientific method, which is a mathematical and experimental technique used to conduct experiments by developing and testing a hypothesis or a prediction about an outcome. Simply put, a hypothesis is a suggested solution to a problem. It includes elements that are expressed in terms of relationships with each other to explain a condition or an assumption that hasn’t been verified using facts. 1 The typical steps in a scientific method include developing such a hypothesis, testing it through various methods, and then modifying it based on the outcomes of the experiments.
A research hypothesis can be defined as a specific, testable prediction about the anticipated results of a study. 2 Hypotheses help guide the research process and supplement the aim of the study. After several rounds of testing, hypotheses can help develop scientific theories. 3 Hypotheses are often written as if-then statements.
Here are two hypothesis examples:
Dandelions growing in nitrogen-rich soils for two weeks develop larger leaves than those in nitrogen-poor soils because nitrogen stimulates vegetative growth. 4
If a company offers flexible work hours, then their employees will be happier at work. 5
Table of Contents
- What is a hypothesis?
- Types of hypotheses
- Characteristics of a hypothesis
- Functions of a hypothesis
- How to write a hypothesis
- Hypothesis examples
- Frequently asked questions
What is a hypothesis?
A hypothesis expresses an expected relationship between variables in a study and is developed before conducting any research. Hypotheses are not opinions but rather are expected relationships based on facts and observations. They help support scientific research and expand existing knowledge. An incorrectly formulated hypothesis can affect the entire experiment leading to errors in the results so it’s important to know how to formulate a hypothesis and develop it carefully.
A few sources of a hypothesis include observations from prior studies, current research and experiences, competitors, scientific theories, and general conditions that can influence people. Figure 1 depicts the different steps in a research design and shows where exactly in the process a hypothesis is developed. 4
There are seven different types of hypotheses—simple, complex, directional, nondirectional, associative and causal, null, and alternative.
Types of hypotheses
The seven types of hypotheses are listed below: 5 , 6,7
- Simple : Predicts the relationship between a single dependent variable and a single independent variable.
Example: Exercising in the morning every day will increase your productivity.
- Complex : Predicts the relationship between two or more variables.
Example: Spending three hours or more on social media daily will negatively affect children’s mental health and productivity, more than that of adults.
- Directional : Specifies the expected direction to be followed and uses terms like increase, decrease, positive, negative, more, or less.
Example: The inclusion of intervention X decreases infant mortality compared to the original treatment.
- Non-directional : Does not predict the exact direction, nature, or magnitude of the relationship between two variables but rather states the existence of a relationship. This hypothesis may be used when there is no underlying theory or if findings contradict prior research.
Example: Cats and dogs differ in the amount of affection they express.
- Associative and causal : An associative hypothesis suggests an interdependency between variables, that is, how a change in one variable changes the other.
Example: There is a positive association between physical activity levels and overall health.
A causal hypothesis, on the other hand, expresses a cause-and-effect association between variables.
Example: Long-term alcohol use causes liver damage.
- Null : Claims that the original hypothesis is false by showing that there is no relationship between the variables.
Example: Sleep duration does not have any effect on productivity.
- Alternative : States the opposite of the null hypothesis, that is, a relationship exists between two variables.
Example: Sleep duration affects productivity.
Characteristics of a hypothesis
So, what makes a good hypothesis? Here are some important characteristics of a hypothesis. 8,9
- Testable : You must be able to test the hypothesis using scientific methods to either accept or reject the prediction.
- Falsifiable : It should be possible to collect data that reject rather than support the hypothesis.
- Logical : Hypotheses shouldn’t be a random guess but rather should be based on previous theories, observations, prior research, and logical reasoning.
- Positive : The hypothesis statement about the existence of an association should be positive, that is, it should not suggest that an association does not exist. Therefore, the language used and knowing how to phrase a hypothesis is very important.
- Clear and accurate : The language used should be easily comprehensible and use correct terminology.
- Relevant : The hypothesis should be relevant and specific to the research question.
- Structure : Should include all the elements that make a good hypothesis: variables, relationship, and outcome.
Functions of a hypothesis
The following list mentions some important functions of a hypothesis: 1
- Maintains the direction and progress of the research.
- Expresses the important assumptions underlying the proposition in a single statement.
- Establishes a suitable context for researchers to begin their investigation and for readers who are referring to the final report.
- Provides an explanation for the occurrence of a specific phenomenon.
- Ensures selection of appropriate and accurate facts necessary and relevant to the research subject.
To summarize, a hypothesis provides the conceptual elements that complete the known data, conceptual relationships that systematize unordered elements, and conceptual meanings and interpretations that explain the unknown phenomena. 1
How to write a hypothesis
Listed below are the main steps explaining how to write a hypothesis. 2,4,5
- Make an observation and identify variables : Observe the subject in question and try to recognize a pattern or a relationship between the variables involved. This step provides essential background information to begin your research.
For example, if you notice that an office’s vending machine frequently runs out of a specific snack, you may predict that more people in the office choose that snack over another.
- Identify the main research question : After identifying a subject and recognizing a pattern, the next step is to ask a question that your hypothesis will answer.
For example, after observing employees’ break times at work, you could ask “why do more employees take breaks in the morning rather than in the afternoon?”
- Conduct some preliminary research to ensure originality and novelty : Your initial answer, which is your hypothesis, to the question is based on some pre-existing information about the subject. However, to ensure that your hypothesis has not been asked before or that it has been asked but rejected by other researchers you would need to gather additional information.
For example, based on your observations you might state a hypothesis that employees work more efficiently when the air conditioning in the office is set at a lower temperature. However, during your preliminary research you find that this hypothesis was proven incorrect by a prior study.
- Develop a general statement : After your preliminary research has confirmed the originality of your proposed answer, draft a general statement that includes all variables, subjects, and predicted outcome. The statement could be if/then or declarative.
- Finalize the hypothesis statement : Use the PICOT model, which clarifies how to word a hypothesis effectively, when finalizing the statement. This model lists the important components required to write a hypothesis.
P opulation: The specific group or individual who is the main subject of the research
I nterest: The main concern of the study/research question
C omparison: The main alternative group
O utcome: The expected results
T ime: Duration of the experiment
Once you’ve finalized your hypothesis statement you would need to conduct experiments to test whether the hypothesis is true or false.
Hypothesis examples
The following table provides examples of different types of hypotheses. 10 ,11
Key takeaways
Here’s a summary of all the key points discussed in this article about how to write a hypothesis.
- A hypothesis is an assumption about an association between variables made based on limited evidence, which should be tested.
- A hypothesis has four parts—the research question, independent variable, dependent variable, and the proposed relationship between the variables.
- The statement should be clear, concise, testable, logical, and falsifiable.
- There are seven types of hypotheses—simple, complex, directional, non-directional, associative and causal, null, and alternative.
- A hypothesis provides a focus and direction for the research to progress.
- A hypothesis plays an important role in the scientific method by helping to create an appropriate experimental design.
Frequently asked questions
Hypotheses and research questions have different objectives and structure. The following table lists some major differences between the two. 9
Here are a few examples to differentiate between a research question and hypothesis.
Yes, here’s a simple checklist to help you gauge the effectiveness of your hypothesis. 9 1. When writing a hypothesis statement, check if it: 2. Predicts the relationship between the stated variables and the expected outcome. 3. Uses simple and concise language and is not wordy. 4. Does not assume readers’ knowledge about the subject. 5. Has observable, falsifiable, and testable results.
As mentioned earlier in this article, a hypothesis is an assumption or prediction about an association between variables based on observations and simple evidence. These statements are usually generic. Research objectives, on the other hand, are more specific and dictated by hypotheses. The same hypothesis can be tested using different methods and the research objectives could be different in each case. For example, Louis Pasteur observed that food lasts longer at higher altitudes, reasoned that it could be because the air at higher altitudes is cleaner (with fewer or no germs), and tested the hypothesis by exposing food to air cleaned in the laboratory. 12 Thus, a hypothesis is predictive—if the reasoning is correct, X will lead to Y—and research objectives are developed to test these predictions.
Null hypothesis testing is a method to decide between two assumptions or predictions between variables (null and alternative hypotheses) in a statistical relationship in a sample. The null hypothesis, denoted as H 0 , claims that no relationship exists between variables in a population and any relationship in the sample reflects a sampling error or occurrence by chance. The alternative hypothesis, denoted as H 1 , claims that there is a relationship in the population. In every study, researchers need to decide whether the relationship in a sample occurred by chance or reflects a relationship in the population. This is done by hypothesis testing using the following steps: 13 1. Assume that the null hypothesis is true. 2. Determine how likely the sample relationship would be if the null hypothesis were true. This probability is called the p value. 3. If the sample relationship would be extremely unlikely, reject the null hypothesis and accept the alternative hypothesis. If the relationship would not be unlikely, accept the null hypothesis.
To summarize, researchers should know how to write a good hypothesis to ensure that their research progresses in the required direction. A hypothesis is a testable prediction about any behavior or relationship between variables, usually based on facts and observation, and states an expected outcome.
We hope this article has provided you with essential insight into the different types of hypotheses and their functions so that you can use them appropriately in your next research project.
References
- Dalen, DVV. The function of hypotheses in research. Proquest website. Accessed April 8, 2024. https://www.proquest.com/docview/1437933010?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals&imgSeq=1
- McLeod S. Research hypothesis in psychology: Types & examples. SimplyPsychology website. Updated December 13, 2023. Accessed April 9, 2024. https://www.simplypsychology.org/what-is-a-hypotheses.html
- Scientific method. Britannica website. Updated March 14, 2024. Accessed April 9, 2024. https://www.britannica.com/science/scientific-method
- The hypothesis in science writing. Accessed April 10, 2024. https://berks.psu.edu/sites/berks/files/campus/HypothesisHandout_Final.pdf
- How to develop a hypothesis (with elements, types, and examples). Indeed.com website. Updated February 3, 2023. Accessed April 10, 2024. https://www.indeed.com/career-advice/career-development/how-to-write-a-hypothesis
- Types of research hypotheses. Excelsior online writing lab. Accessed April 11, 2024. https://owl.excelsior.edu/research/research-hypotheses/types-of-research-hypotheses/
- What is a research hypothesis: how to write it, types, and examples. Researcher.life website. Published February 8, 2023. Accessed April 11, 2024. https://researcher.life/blog/article/how-to-write-a-research-hypothesis-definition-types-examples/
- Developing a hypothesis. Pressbooks website. Accessed April 12, 2024. https://opentext.wsu.edu/carriecuttler/chapter/developing-a-hypothesis/
- What is and how to write a good hypothesis in research. Elsevier author services website. Accessed April 12, 2024. https://scientific-publishing.webshop.elsevier.com/manuscript-preparation/what-how-write-good-hypothesis-research/
- How to write a great hypothesis. Verywellmind website. Updated March 12, 2023. Accessed April 13, 2024. https://www.verywellmind.com/what-is-a-hypothesis-2795239
- 15 Hypothesis examples. Helpfulprofessor.com Published September 8, 2023. Accessed March 14, 2024. https://helpfulprofessor.com/hypothesis-examples/
- Editage insights. What is the interconnectivity between research objectives and hypothesis? Published February 24, 2021. Accessed April 13, 2024. https://www.editage.com/insights/what-is-the-interconnectivity-between-research-objectives-and-hypothesis
- Understanding null hypothesis testing. BCCampus open publishing. Accessed April 16, 2024. https://opentextbc.ca/researchmethods/chapter/understanding-null-hypothesis-testing/#:~:text=In%20null%20hypothesis%20testing%2C%20this,said%20to%20be%20statistically%20significant
Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.
Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.
Experience the future of academic writing – Sign up to Paperpal and start writing for free!
Related Reads:
- What is an Argumentative Essay? How to Write It (With Examples)
- Empirical Research: A Comprehensive Guide for Academics
- How to Write a Scientific Paper in 10 Steps
- What is a Literature Review? How to Write It (with Examples)
Measuring Academic Success: Definition & Strategies for Excellence
What are scholarly sources and where can you find them , you may also like, how to write a thematic literature review, chicago style citation guide: understanding the chicago manual..., what is the purpose of an abstract why..., what are citation styles which citation style to..., what are the types of literature reviews , abstract vs introduction: what is the difference , mla format: guidelines, template and examples , machine translation vs human translation: which is reliable..., dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples .
IMAGES
COMMENTS
Sep 4, 2024 · Simple Hypothesis. Simple Hypothesis guesses a connection between two things. It says that there is a connection or difference between variables, but it doesn't tell us which way the relationship goes. Example: Studying more can help you do better on tests. Getting more sun makes people have higher amounts of vitamin D. Complex Hypothesis
Mar 26, 2024 · The most common types include null hypothesis, alternative hypothesis, directional hypothesis, and non-directional hypothesis. 1. Null Hypothesis (H₀) Definition: The null hypothesis states that there is no relationship between the variables being studied or that any observed effect is due to chance. It serves as the default position, which ...
Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis. All lilies have the same number of petals is an example of a null hypothesis. If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.
May 6, 2022 · 6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.
Sep 26, 2022 · 7. Statistical hypothesis. The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement. Characteristics of a Good Hypothesis
Nov 5, 2024 · Summary. In summary, crafting a strong hypothesis constitutes an essential ability within the realm of scientific research. Grasping the various forms of hypotheses and mastering the process for their formulation and refinement are critical to establishing your research as solid and significant.
Since hypothesis is an intelligent guess or a tentative solution hence the formulation of hypothesis becomes imperative as soon as a research question is formulated.iii Hypothesis is merely a tentative assumption made in order to draw and test its logical or empirical consequences. It is a tentative, testable statement.
Apr 17, 2024 · Null hypothesis: This hypothesis suggests no relationship exists between two or more variables. Alternative hypothesis: This hypothesis states the opposite of the null hypothesis. Statistical hypothesis: This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
A hypothesis is a guess about what’s going to happen. In research, the hypothesis is what you the researcher expects the outcome of an experiment, a study, a test, or a program to be. It is a belief based on the evidence you have before you, the reasoning of your mind, and what prior experience tells you.
Apr 27, 2024 · A hypothesis is an assumption about an association between variables made based on limited evidence, which should be tested. A hypothesis has four parts—the research question, independent variable, dependent variable, and the proposed relationship between the variables. The statement should be clear, concise, testable, logical, and falsifiable.