SQL Tutorial

Sql database, sql references, sql examples, sql exercises.

You can test your SQL skills with W3Schools' Exercises.

We have gathered a variety of SQL exercises (with answers) for each SQL Chapter.

Try to solve an exercise by filling in the missing parts of a code. If you're stuck, hit the "Show Answer" button to see what you've done wrong.

Count Your Score

You will get 1 point for each correct answer. Your score and total score will always be displayed.

Start SQL Exercises

Start SQL Exercises ❯

If you don't know SQL, we suggest that you read our SQL Tutorial from scratch.

Kickstart your career

Get certified by completing the course

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

SQL Query Practice: 20 Exercises for Beginners

Author's photo

  • sql practice

Table of Contents

1. Show the Final Dates of All Events and the Wind Points

2. show all finals where the wind was above .5 points, 3. show all data for all marathons, 4. show all final results for non-placing runners, 5. show all the result data for non-starting runners, 6. show names for men’s discipline runs under 500 meters, 7. sort country names and abbreviations, 8. sort athletes’ first and last names, 9. sort final results over three hours, 10. show top 3 athletes’ names and places, 11. show all marathons with their competition name, competition year, and discipline name, 12. show mo farah’s scores for all disciplines, 13. show the competitions’ names and the number of events, 14. show the most popular athlete names, 15. show each country and the number of athletes who finished without a place, 16. calculate the average pace for each run, 17. find all faster-than-average times for 1,500 meter runs, 18. find all athletes who ran in at least two events in a competition, 19. show runners who only finished first, 20. find all the athletes who didn’t start and who won at least once, from basic sql query practice to becoming an sql master.

These 20 exercises are just what beginners need for SQL query practice. Try to solve each of them, and then look at the solutions. If something needs to be clarified, there are explanations for each solution.

In this article, there’ll be less talking than usual. Instead, you’re going to write the answers to SQL practice exercises. (Don’t worry; we’ve included the solutions if you get stuck.) The whole point is to give you, as a beginner, plenty of opportunities for SQL query practice.

I’ve selected twenty examples from our Basic SQL Practice: Run Track Through Queries! . If you feel you need to practice more by the end of the article – I recommend that wholeheartedly! – you’ll find almost 100 more interactive SQL exercises in that course. They cover topics like querying one table, using JOINs , sorting data with ORDER BY , aggregating data and using GROUP BY , dealing with NULLs , doing mathematical operations, and writing subqueries.

And you could go even further! We have the SQL Practice track with 10 SQL practice courses and each month we release a new Monthly SQL Practice course for yet more SQL query practice.

The dataset contains data about the finals of track running competitions across athletics championships: Rio de Janeiro Olympic Games in 2016, London IAAF World Championships in Athletics in 2017, and Doha IAAF World Championships in Athletics in 2019.

Data is stored in six tables: competition , event , discipline , final_result , athlete , and nationality . The schema is shown below:

Basic SQL Query Practice Online

The competition information is stored in the table competition . It has the following columns:

  • id – The ID of the competition and the primary key of the table.
  • name – The competition's name.
  • start_date – The competition's first day.
  • end_date – The competition's last day.
  • year – The year during which this competition occurred.
  • location – The location of this competition.

Here’s the data from the table.

The table discipline holds information for all running disciplines. It has these columns:

  • id – The ID of the discipline and the primary key of the table.
  • name – The discipline's name.
  • is_men – TRUE if it's a men's discipline, FALSE if it's a women's.
  • distance – The discipline's distance, in meters.

This is a snapshot of the first five rows of the data:

The next table is event , which stores  information about each particular event:

  • id – The ID of the event and the primary key of the table.
  • competition_id – Links the event to a competition.
  • discipline_id – Links the event to a discipline.
  • final_date – When this event's final was held.
  • wind – The wind points during the final.

Here are the first five rows of this table:

The data about each athlete is in the table athlete :

  • id – The ID of the athlete and the primary key of the table.
  • first_name – The athlete's first name.
  • last_name – The athlete's last name.
  • nationality_id – The athlete's nationality.
  • birth_date – The athlete's birth date.

These are the first five rows:

The nationality table contains country information:

  • id – The ID of the country and the primary key of the table.
  • country_name – The country's name.
  • country_abbr – The country's three-letter abbreviation.

Here is a five-row snapshot of this table:

The last table is final_result . It contains information about the participants and their results in a particular event:

  • event_id – The event ID.
  • athlete_id – The athlete’s
  • result – The time/score for the athlete (can be NULL).
  • place – The place achieved by the athlete (can be NULL).
  • is_dsq – TRUE if d i sq ualification occurred.
  • is_dnf – TRUE if the athlete d id n ot f inish the run.
  • is_dns – TRUE if the athlete d id n ot s tart the run.

Here’s the snapshot:

Now that you’ve had a good look at the dataset, let’s start our basic SQL query practice! All the exercises will require you to know some SQL, so make sure you know all the basic elements of an SQL query .

Exercise: Find the final dates of all events and the wind points.

Explanation: The data you need is in the table event . You have to select two columns from it: final_date and wind. You do that by writing the first column in the SELECT statement. Next, you write the second column name and separate the column names with a comma.

Finally, you reference the table in the FROM clause.

Exercise: Show all the finals’ dates with a wind stronger than 0.5 points.

Explanation: First, select the column final_date from the table event . With that, you’d get a list of all the finals. However, you don’t need the whole list – only those finals where the wind was stronger than 0.5.

So, you need to filter data using the WHERE clause. In it, you write the column name you want to filter; in this case, it’s the column wind . To get the wind above 0.5, use the ‘greater than’ ( > ) logical operator.

Exercise: Show the discipline data for all marathons.

Explanation: To select all the columns, you don’t have to write their names explicitly. There’s a shorthand for ‘all columns’ called asterisk ( * ). Instead of the columns’ names, just put an asterisk in SELECT .

Then, as you want data from the table discipline , you reference it in FROM .

Finally, you have to filter the data. Use  WHERE and the LIKE operator . This operator looks through textual data in the column and returns all rows containing the text in the WHERE condition. In other words, the condition will look for the word ‘Marathon’. You must put the word in single quotes.

However, you don’t know the exact name of the discipline; you just know it has to contain that word. It can be anywhere in the discipline name: at the beginning, middle, or end. To look anywhere in the string , put the modulo ( % ) operator before and after the word you’re searching.

Exercise: Show all the data for final results for runners who did not place.

Explanation: You need all the columns, so use an asterisk in SELECT and reference the table final_result in FROM.

You need to show only those results where runners ended without a place. You will use WHERE this time, too, and filter on the column place . If a runner ends without a place, then the column place will be empty (i.e. NULL). You need the IS NULL operator after the column name to return all these rows.

Knowing what a NULL is in SQL  would be a good idea before using the IS NULL operator.

Exercise: Show all the results data for runners that didn’t start the run at all.

Explanation: Select all the columns from the table final_result using an asterisk and referencing the table in FROM .

Then, you want to use WHERE and filter the column by is_dns . If the runner didn’t start the race, this column will have the TRUE value. So, you need to use the IS TRUE operator after the column name.

Output: Here’s the whole output:

Exercise: Show only the men’s discipline names where the distance to be run is less than 500 meters.

Explanation: First, select the column name from the table discipline .

You again need to filter data – this time, by putting two conditions in WHERE .

The first condition is that it’s a male discipline. So, you have to filter the column is_men using the IS TRUE operator. Then you add the second condition: the values in the column distance have to be below 500. This condition uses the less than operator ( < ). Since both conditions have to be satisfied, separate the conditions using the AND operator.

Exercise: Show all the countries’ names and abbreviations. Sort the output alphabetically by country name.

Explanation: Select the country name and its abbreviation from the table nationality .

To sort the output, use the ORDER BY clause. You want to sort by country name, so write country_name in ORDER BY . The output should be sorted alphabetically, so use the keyword ASC (ascending) after the column name.

Output: Here are the first five rows of the output:

Exercise: Show every athlete’s first and last name. Sort the output descendingly by the athlete’s first name. If multiple athletes have the same name, show their surnames sorted descendingly.

Explanation: Select the first and last name from the table athlete .

Then, add the ORDER BY clause. First sort by the first name descendingly, adding DESC after the column name. The second sorting condition sorts by the last name, also descendingly. Again, write the column name and add DESC . The conditions have to be separated by a comma.

Exercise: For all final results, show the times that are at least three hours. Sort the rows by the result in descending order.

Explanation: Select the column result from the table final_result .

Then, use WHERE to find the results that are below three hours. You can use the ‘greater than or equal’ ( >= ) and INTERVAL operators.

The data in the result column is formatted as time. So, you need to use INTERVAL to get the specific part (interval) from that data. In this case, it’s three hours. Simply write ‘3 hours’ after INTERVAL .

Finally, sort the output descendingly by the result.

Exercise: For every athlete ever on the podium (i.e. finished in the top 3), show their last and first name and their place.

Explanation: In this exercise, you need to use data from two tables: athlete and final_result . So, let’s start the explanation from the FROM clause.

You reference the athlete table and give it an alias ‘a’, so you won’t need to write the table’s full name elsewhere in the query. To get data from another table, too, you need to join the tables. In this case, use JOIN , which will return only the matching rows from both tables. You do that by simply referencing the table final_result in JOIN and adding the ‘fin’ alias.

Next, you have to specify the joining condition using the keyword ON . The tables are joined on shared columns: id from athlete and athlete_id from final_result . You’re looking for rows where the values in these two columns are equal, so put an equal sign ( = ) between them. In front of each column name, put the table alias followed by a dot so the database knows which table that column is in.

Now that you have joined the tables, you can select the columns. In front of each column name, put the table alias for the same reason as explained earlier. Now, you have the athletes’ last and first names and their places.

As a last step, simply filter data using WHERE and the column place . You’re looking for podium finishes, so the values must be equal to or less than three. Use the ‘less than or equal’ ( <= ) operator.

This SQL query practice requires you to know SQL JOINs. If you’re still unsure how they work, look at these SQL JOINs practice questions before you go to other exercises.

Exercise: Show all marathons, the name (rename this column competition_name ) and year of the competition, and the name of the discipline (rename this column discipline_name ).

Explanation: This exercise shows how to join multiple tables. The principle is the same as with two tables. You just add more JOINs and the joining conditions.

In this case, you join the competition and event tables where e.competition_id equals the c.id column .

Then, you need to add the discipline table to the joining chain. Write JOIN again and reference the table discipline . Add the joining condition: the column discipline_id from the event has to be equal to the id column from the discipline table.

Now, select the required columns, remembering to put the table alias in front of each column. Alias competition_name and discipline_name using the keyword AS to give them the column names described in the instructions.

Finally, filter the results to show only marathon disciplines.

Exercise: Show Mo Farah's (athlete ID of 14189197) scores for all disciplines. Show NULL if he has never participated in a given discipline. Show all the male disciplines' names, dates, places, and results.

Explanation: Join the tables discipline and event on the columns discipline_id and id . You need to use LEFT JOIN . This type of join will return all the rows from the first (left) table and only the matching rows from the second (right) table. If there are no matching rows, the values will be NULL . This is ideal for this exercise, as you need to show all disciplines and use  NULLs if Mo Farah has never participated in the discipline.

The next join is also a LEFT JOIN . It joins the table event with the table final_result . The first joining condition here joins the tables on the columns event_id and id . You also need to include the second condition by adding the keyword AND . This second condition will only look for Mo Farah’s data, i.e., the athlete with the ID of 14189197.

As a last step, use WHERE to find only men’s disciplines.

Exercise: Show all the competitions’ names and the number of events for each competition.

Explanation: First, show the column name from the table competition and rename the column to competition_name .

Then, use the aggregate function COUNT(*) to count the number of events that were held. The COUNT() function with an asterisk will count all the rows from the output, including NULLs. For better readability, we alias the resulting column as events_held .

The tables we join are competition and event . Finally, to get the number of events per competition, you need to GROUP BY the competition name.

Exercise: Show the most popular athlete names. Names are popular if at least five athletes share them. Alongside the name, also show the number of athletes with that name. Sort the results so that the most popular names come first.

Explanation: First, select the first names and count them using COUNT(*) . Then, group by the first name of the athlete. Now you have all the names and their count.

But you need to show only those names with a count above five. You’ll achieve that by using the HAVING clause. It has the same use as WHERE, but HAVING is used for filtering aggregated data.

Finally, sort the output by the name count from the highest to the lowest. You can’t simply write the name_count column name in ORDER BY because sorting is done before aggregation; SQL won’t recognize the column name. Instead, copy COUNT(*) and sort descendingly.

This exercise shows a typical SQL problem that requires filtering data with an aggregate function .

Exercise: Show all countries with the number of their athletes that finished without a place. Show 0 if none. Sort the output in descending order by the number of athletes and by the country name ascendingly.

Explanation: You have to keep all rows from the nationality table, so you need to LEFT JOIN it with the athlete table. You do that where id equals nationality_id . Then, LEFT JOIN another table where id from the athlete table equals athlete_id from the final_result table.

Because you need all the nationality rows, you can’t use the IS NULL condition in WHERE . There’s a solution: move it to the ON clause, and you’ll get all the values where the place is NULL .

Now, you can select the column country_name . Also, use the COUNT() function on the athlete_id column to get the number of athletes who finished without a place. You can’t use COUNT(*) here because it would’ve counted f, and you need the count of concrete athletes.

To get the count value by country, group the output by country name.

Finally, sort the output by the number of athletes descendingly and by the country name ascendingly.

Exercise: Calculate the average pace for each run and show it in the column named average_pace .

Explanation: To get the average pace by run, you need to divide the result by the distance. This is what the above query does, but with two tweaks.

First, you need to multiply the distance by 1.0. You do that to convert the distance to a decimal number. Without that, the division might return a different result, as the result will be divided by the whole number. The second tweak is that you divide the distance by 1,000. By doing this, you’ll convert the distance from meters to kilometers.

Now that you have the calculation, give this column the alias average_pace .

The rest of the query is what you already saw in previous examples: you’re joining the table event with the table discipline and then with the table final_result .

Output: Here are the first five rows from the output:

Exercise: Output the times for all 1,500-meter runs. Show only times that are faster than the average time for that run.

Explanation: You need to know SQL subqueries to solve this exercise. Their basic definition is that they are queries within a main query. Let’s see how this works!

Select the result column from the table final_result . Then, JOIN the table with event and then with the discipline table.

After that, you have to set two conditions in WHERE . The first one selects only distances that are equal to 1,500.

The second one looks for data where the result is below the total average for 1,500-meter runs. To calculate the average, use a subquery in the following way.

In the parentheses after the comparison operator, write another SELECT statement ( i.e., a subquery). In it, use the AVG() aggregate function to calculate the average result. The rest of the query is the same as the main query; you’re joining the same tables and using the same filtering condition in WHERE .

Output: Here are the first few rows from the output:

Exercise: Output a list of athletes who ran in two or more events within any competition. Show only their first and last names.

Explanation: Start by selecting the first and the last name from the table athlete .

Then, use WHERE to set up a condition. We again use a subquery to return data we wanted to compare, this time with the column id. However, in the previous example, we used the ‘less than’ ( < ) operator because the subquery returned only one value. This time, we use the operator IN , which will go through all the values returned by the subquery and return those that satisfy the condition.

The condition is that the athletes compete in at least two events within a competition. To find those athletes, select the column athlete_id and join the tables event and final_result . Then, group the results by the competition and athlete IDs. This example shows you can group the output by the column that is not in SELECT . However, all the columns that appear in SELECT have to also appear in GROUP BY .

Finally, use HAVING to filter the data. Count the number of rows using COUNT(*) . That way, you’re counting how many times each athlete appears. Set the condition to return only those athletes with a count equal to or above two.

Output: Here’s the output snapshot.

Exercise: Show all runners who have never finished at any place other than first; place was never missing for them. Show three columns: id , first_name , and last_name .

Explanation: For this solution, you need to use the EXCEPT set operator. The set operators are used to return the values from two or more queries. EXCEPT returns all the unique records from the first query except those returned by the second query.

The first query in the solution looks for those athletes who finished first. To get these values, select the required columns from the table athlete . Then, join the table with the table final_result . After that, set the condition in WHERE to find only the first places.

Now, write the EXCEPT keyword and follow it with the second query.

The second query is almost the same as the first one. The only difference is two conditions in WHERE .

The first condition returns all the places that are not the first by using the ‘not equal’ ( != ) operator. The second condition looks for the non- NULL places, i.e., the place was never missing for that athlete. The conditions are connected using OR because one of those conditions has to be true; the athlete can’t finish below first place and also not finish at all.

Note that for set operators to work, there has to be the same number of columns of the same data type in both queries.

Exercise: Output the athletes who didn’t start at least one race and won at least one race. Show three columns: id , first_name , and last_name .

Explanation: This exercise uses another set operators. This time, it’s INTERSECT , which returns all the values that are the same in both queries.

The first query in the solution lists the athlete IDs and first and last names. The tables athlete and final_result are joined on the columns id and athlete_id from the tables.

The condition in WHERE looks for rows with TRUE as a value in the column is_dns , i.e., the column that shows whether the athlete started the race.

As in the previous example, write the set operator and then the second query.

The second query is the same as the first one, except for WHERE . The filtering condition will find the athletes who finished first.

Together, these two queries output the athletes that didn’t start the race at least once but also finished first at least once.

You have to start from somewhere. These 20 basic SQL query practices are ideal for building foundations before learning more advanced concepts.

You learned plenty as you practiced writing queries that used WHERE , ORDER BY , JOINs , GROUP BY , and HAVING . I also showed you several examples of dealing with NULLs, doing computations, writing subqueries, and using set operators. The queries in this article have been taken from our Basic SQL Practice: Run Track Through Queries! This is our SQL practice course that offers exercises on different SQL topics: WHERE , ORDER BY , JOINs , GROUP BY , HAVING , and more. You’ll find even more basic SQL exercises there. And if you want more practice, check out our SQL Practice track, which contains 10 SQL practice courses for beginners and over 1000 exercises.

You may also like

assignments on sql

How Do You Write a SELECT Statement in SQL?

assignments on sql

What Is a Foreign Key in SQL?

assignments on sql

Enumerate and Explain All the Basic Elements of an SQL Query

TechBeamers

50 SQL Query Practice Questions for Interview

Hello friends, we’ve brought you 50 frequently asked SQL query interview questions and answers for practice. Solving practice questions is the fastest way to learn any subject. That’s why we’ve selected these 50 SQL queries ⤵ to give you enough exercises for practice. You can now run these SQL exercises inline and get a feel of live execution.

If it is your first time here, you should start by running the readymade SQL scripts to create the test data . These scripts include a sample Worker table, a Bonus, and a Title table with pre-filled data. Just run the SQL scripts to set everything you need to practice with the SQL queries. By the end of this assignment, you will feel more confident to face SQL interviews at top IT MNCs like Amazon, Flipkart, Facebook, etc.

SQL Query Questions and Answers for Practice

We recommend you go through the questions and build queries by yourself. Try to find answers on your own. However, you need to set up the sample tables and test data. We have provided simple SQL scripts to seed the test data. Use those first to create the test database and tables.

By the way, our site has more SQL queries available for interview preparation. So if you are interested, then follow the link given below.

  • Most Frequently Asked SQL Interview Questions

Prepare Sample Data To Practice SQL Skills

Sample table – worker, sample table – bonus, sample table – title.

To prepare the sample data, run the following queries in your database query executor or SQL command line. We’ve tested them with the latest version of MySQL Server and MySQL Workbench query browser. You can download these tools and install them to execute the SQL queries. However, these queries will run fine in any online MySQL compiler, you may use them.

SQL Script to Seed Sample Data.

Running the above SQL on any MySQL instance will show a result similar to the one below.

SQL Query Questions - Creating Sample Data

Start with 20 Basic SQL Questions for Practice

Below are some of the most commonly asked SQL query questions and answers for practice. Get a timer to track your progress and start practicing.

Q-1. Write an SQL query to fetch “FIRST_NAME” from the Worker table using the alias name <WORKER_NAME>.

The required query is:

Q-2. Write an SQL query to fetch “FIRST_NAME” from the Worker table in upper case.

Q-3. write an sql query to fetch unique values of department from the worker table., q-4. write an sql query to print the first three characters of  first_name from the worker table., q-5. write an sql query to find the position of the alphabet (‘a’) in the first name column ‘amitabh’ from the worker table., q-6. write an sql query to print the first_name from the worker table after removing white spaces from the right side., q-7. write an sql query to print the department from the worker table after removing white spaces from the left side., q-8. write an sql query that fetches the unique values of department from the worker table and prints its length., q-9. write an sql query to print the first_name from the worker table after replacing ‘a’ with ‘a’., q-10. write an sql query to print the first_name and last_name from the worker table into a single column complete_name. a space char should separate them., q-11. write an sql query to print all worker details from the worker table order by first_name ascending., q-12. write an sql query to print all worker details from the worker table order by first_name ascending and department descending., q-13. write an sql query to print details for workers with the first names “vipul” and “satish” from the worker table., q-14. write an sql query to print details of workers excluding first names, “vipul” and “satish” from the worker table., q-15. write an sql query to print details of workers with department name as “admin”., q-16. write an sql query to print details of the workers whose first_name contains ‘a’., q-17. write an sql query to print details of the workers whose first_name ends with ‘a’., q-18. write an sql query to print details of the workers whose first_name ends with ‘h’ and contains six alphabets., q-19. write an sql query to print details of the workers whose salary lies between 100000 and 500000., q-20. write an sql query to print details of the workers who joined in feb 2021., 12 medium sql query interview questions / answers for practice.

At this point, you have acquired a good understanding of the basics of SQL, let’s move on to some more intermediate-level SQL query interview questions. These questions will require us to use more advanced SQL syntax and concepts, such as GROUP BY, HAVING, and ORDER BY.

Q-21. Write an SQL query to fetch the count of employees working in the department ‘Admin’.

Q-22. write an sql query to fetch worker names with salaries >= 50000 and <= 100000., q-23. write an sql query to fetch the number of workers for each department in descending order., q-24. write an sql query to print details of the workers who are also managers., q-25. write an sql query to fetch duplicate records having matching data in some fields of a table., q-26. write an sql query to show only odd rows from a table., q-27. write an sql query to show only even rows from a table., q-28. write an sql query to clone a new table from another table..

The general query to clone a table with data is:

Q-29. Write an SQL query to fetch intersecting records of two tables.

Q-30. write an sql query to show records from one table that another table does not have., q-31. write an sql query to show the current date and time..

The following MySQL query returns the current date:

Q-32. Write an SQL query to show the top n (say 10) records of a table.

Specify the SQL query in the below code box:

18 Complex SQL Queries for Practice

Now, that you have built a solid foundation in intermediate SQL, It’s time to practice with some advanced SQL query questions with answers. These interview questions involve queries with more complex SQL syntax and concepts, such as nested queries, joins, unions, and intersects.

Q-33. Write an SQL query to determine the nth (say n=5) highest salary from a table.

MySQL query to find the nth highest salary:

SQL Server query to find the nth highest salary:

Q-34. Write an SQL query to determine the 5th highest salary without using the TOP or limit method.

The following query is using the correlated subquery to return the 5th highest salary:

Use the following generic method to find the nth highest salary without using TOP or limit.

Q-35. Write an SQL query to fetch the list of employees with the same salary.

Q-36. write an sql query to show the second-highest salary from a table., q-37. write an sql query to show one row twice in the results from a table., q-38. write an sql query to fetch intersecting records of two tables., q-39. write an sql query to fetch the first 50% of records from a table..

Practicing SQL query interview questions is a great way to improve your understanding of the language and become more proficient in SQL. In addition to improving your technical skills, practicing SQL query questions can help you advance your career. Many employers seek candidates with strong SQL skills, so demonstrating your proficiency can get you a competitive edge.

Q-40. Write an SQL query to fetch the departments that have less than five people in them.

Q-41. write an sql query to show all departments along with the number of people in there..

The following query returns the expected result:

Q-42. Write an SQL query to show the last record from a table.

The following query will return the last record from the Worker table:

Q-43. Write an SQL query to fetch the first row of a table.

Q-44. write an sql query to fetch the last five records from a table., q-45. write an sql query to print the names of employees having the highest salary in each department., q-46. write an sql query to fetch three max salaries from a table., q-47. write an sql query to fetch three min salaries from a table., q-48. write an sql query to fetch nth max salaries from a table., q-49. write an sql query to fetch departments along with the total salaries paid for each of them., q-50. write an sql query to fetch the names of workers who earn the highest salary., summary: 50 sql query interview questions for practice.

We hope you enjoyed solving the SQL exercises and learned something new. Stay tuned for our next post, where we’ll bring you even more challenging SQL query interview questions to sharpen your proficiency.

Thanks for reading! We hope you found this tutorial helpful. If yes, please share it on Facebook / Twitter with your friends and colleagues You can also follow us on our social media platforms for more resources. if you seek more information on this topic, check out the “You Might Also Like” section below.

SQL Performance Interview Guide

Check 25 SQL performance-related questions and answers.

Keep Learning SQL, TechBeamers.

You Might Also Like

A beginner’s guide to sql joins, if statement in sql queries: a quick guide, 30 pl sql interview questions and answers, the difference between upsert & insert, how to create a table in sql.

Meenakshi Agarwal Avatar

Leave a Reply

Your email address will not be published. Required fields are marked *

Popular Tutorials

IMAGES

  1. SQL Assignments with Solutions

    assignments on sql

  2. Exercises on SQL

    assignments on sql

  3. Assignments on SQL Server

    assignments on sql

  4. Solved Assignment \#5: SQL Part 2

    assignments on sql

  5. Solved SQL Assignment 1 From Blackboard, import the file

    assignments on sql

  6. GitHub

    assignments on sql